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A finite difference scheme for solving the equations of fluid motion in a generalized 
coordinate system has been constructed. The scheme conserves mass and all the first 
integral moments of the motion. The scheme also advectively “almost conserves” second 
moments, in that the magnitude of implicit numerical smoothing is typically about an 
order smaller than explicit viscosity and diffusion. Calculations with the model support 
the theoretical conjecture that the difference scheme is stable whenever the analogous 
Cartesian scheme is stable. The scheme has been used to calculate dry atmospheric 
convection due to differential heating between top and bottom of mountainous terrain. 
The general small-scale characteristics of mountain up-slope winds have been simulated. 
In addition, the results have demonstrated the crucial role played by the eddy diffusivities 
and the environmental stability, in determining both the quantitative and the qualitative 
features of the circulation. 

I. INTRODUCTION AND GENERAL APPROACH 

In a previous paper [8], henceforth referred to as paper I, the authors have shown 
how a coordinate transformation may be utilized to solve numerically the Navier- 
Stokes equations with irregular lower boundary. The governing equations are then 
algebraically more complicated than their Cartesian analogs. Nevertheless, the 
boundary and the boundary conditions are simpler. This latter property makes it 
possible to employ many of the ideas and techniques of conventional difference 
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schemes. Another advantage of the transformed approach is its ability to avoid 
singularities which result from the presence of obtuse boundary corners. These 
singularities are mathematically genuine, but unrealistic in many cases of physical 
interest in which the topography is smooth. 

The numerical method to be described is, in principle, applicable to three space 
dimensions as well as to two. Our actual computations, however, are two-dimen- 
sional. We have felt that since the idea of using a coordinate transformation for the 
calculation of nonhydrostatic flow above a mountain is new, it should first be 
compared with previous calculations, which were done by using Cartesian coor- 
dinates. One such numerical simulation directly relevant to meteorology is that of 
Orville [20], and his calculations are two-dimensional. 

One obvious advantage of two-dimensional calculations is that, taking into 
account limitations such as computer time and storage, two-dimensional calcula- 
tions would permit better resolution per dimension. In fact, it has been concluded 
by Fox [6], who has carried out calculations in flat topography for three- 
dimensional shape-preserving convective elements, that three-dimensional cal- 
culations, with present computers, are only marginally possible. Our attitude is 
that it is necessary to understand the successes and limitations of three-dimensional 
dynamic simulations in flat topography before proceeding to three-dimensional 
calculations with topography. 

It must be borne in mind, however, that some two-dimensional flows are in- 
trinsically different from three-dimensional flows [ 16, 241. The discrepancy becomes 
more and more severe as the Reynolds number increases. Thus the results of two- 
dimensional calculations could by no means be used to explain three-dimensional 
phenomena. However, no numerical approximations relevant to only two dimen- 
sions are used. In particular, we have used the “primitive” equations with velocity 
and pressure as dependent variables, rather than higher-order derived equations in 
which the vorticity and stream function are dependent variables. The viability of 
our method for three-dimensional calculations is therefore asserted. 

In this paper we treat explicitly only the case of “free slip.” The “free slip” case 
is numerically more difficult to deal with than the “no slip” case. However, it has 
the advantage of simplifying the boundary layer (see Discussion in Section 2.4 of 
paper I and also Eqs. (2-49-a-b) of paper I). 

II. GENERAL FEATURES OF THE FINITE DIFFERENCE SCHEME 

2.1. Layout of Variables and Indices in the Mesh 
-- An Eulerian finite difference mesh in (x, z) space is shown in Fig. 1. For clarity 

we denote every transformed quantity by an overbar (-). Thus u and w are the 
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- - velocities in the x, z direction, respectively, and u, w are the contravariant com- 
ponents of the velocity vector in the X, Z direction, respectively. A typical cell is 
shown in more detail in Fig. 2. 

i = % 

FIG. 1. An Eulerian mesh in the (f, S) space. 

q k + % 

FIG. 2. Typical cell and locations of variables in the mesh. 

k = kT 
k=kT-% 

k=kT-1% 

k = kT - 2% 

i=IM-% 

k=3% 

k=2% 

k=li 

k=l 

The X coordinate is uniformly discretized at points Xi = (i - 1) dx, 
i = 0, l,..., IM. The Z coordinate is discretized at points 

z = (k - 0.5) AZ, k = +, 1, 1.5, 2.5 ,..., kT-&,kT,kTf+, 

A.5 = H/(kT - l), A5 = D/(IM - 1). 
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H and D are, respectively, the vertical and lateral extent of the computational 
domain. 

The computational boundaries of the domain are from i = $ at the left to 
i = ZM - -$ at the right, and from k = 1 at the bottom to k = kT at the top. Thus 
the grid is uniform in the X direction with width AX, but in the Z direction the grid 
is uniform only at internal points. That is to say, the mesh width is AZ from k = 1.5 
to k = kT - 3, and at the bottom and top boundary, k = 1 and k = kT, the 
mesh width is AZ/~. The physical domain is (0, ZM), and (4, kT + $). 

We denote typical quantities at points (Xi , ZJ asjifij . Thus 

i~&+~,~,~ E ii((i + 4 - 1) AX, (k - 0.5) AZ), etc. 

In order to avoid confusion with contravariant indexing, which was used previously, 
all indices which are related to finite differencing are subscripted. ti velocities are 
defined at grid points (i + a, k), and iV velocities at interior points are defined at 
cell edges (i, k + $). At the top and bottom boundary the condition Wi,, = 
wi,g = 0 is imposed. Other quantities such as density p, pressure p, potential 
temperature 8, viscosity coefficient KM (or KM), and diffusion coefficient KH 
(or KH) are defined at cell centers (i, k). 

The reason for halving the mesh width in the .? direction, at the top and bottom 
boundary, is that we do not associate the points (i, 1) at the boundary with the 
earth’s surface, but rather postulate that a boundary layer of width AZ/~ lies beneath 
the line k = 1. Frequently the temperature at boundary points (i, 1) and a pre- 
sumed ground temperature at points (i, 4) are used to evaluate the normal heat 
flux at points (i, 1). Note that the points (i, 3) are beneath the computational 
domain. At the top boundary (k = kT), and for a free-slip/rigid boundary condi- 
tion, halving the mesh width merely means that k = kT is an axis of symmetry, i.e., 

then 
Wi,kTfl/l - - -wi,kT-l/2, Ui+l12,RT-1 = %+lI2,kT+l * 

Apart from the somewhat unusual treatment of the bottom and top boundary, 
this is the well-known staggered-mesh configuration introduced by Harlow and 
Welch [14]. Lilly [19] has shown that if one uses this configuration in a systematic 
way, quadratic quantities in finite-difference approximations to equations of 
conservation form are quasiconserved. It is important to emphasize that our 
transformed momentum equations (2-l) are not in strict conservation form, since 
extra nonderivative terms appear. Our temperature equation is in strict conserva- 
tion form. It is also worth noting that in the schemes which quasiconserve qua- 
dratic quantities, numerical diffusion is eliminated [19]. This claim will remain 
true even if insufficient zoning is used. However, inadequate zoning will cause large 
truncation errors. 



280 GAL-CHEN AND SOMERVILLE 

2.2. Principle of the Finite Difference Scheme 

A. Governing Equations 

Our momentum and continuity equations ((2-30), (2-31) of paper I) can be 
written as 

@/%)(PX) + (a/z)(Pz) = 0, (2-l-a) 

(a/at)(PX) + FX(PX, PZ, p) = -PGX, (2-l-b) 

(~/~t)(PZ) + FZ(PX, PZ, p) = -PGZ + B(B), (2-l-c) 

where 

PX E p(G)‘l” U, PZ = p(G)li2 W, (2-2-a) 

PGX = (a/82) p + (a/L%) G=p, (2-2-b) 

PGZ = (a/32) G13p + (a/82) G33p + (CR)p, (2-2-c) 

(GY2 P -P, (2-2-d) 

W) = (Pd4J 03 (2-2-e) 

G”” = - 35-H 
ax2 H - z, ’ 

(2-2-f) 

FX(PX, PZ, p) = aelaxj, 

FZ(PX,PZ,~) = (a+/axq + /m3n/ vn. 
(2-2-g) 

(2-2-h) 

Here the tensorial notation with summation convention has been used. z, is the 
topography; G1j2, GQ, (m3n} are the Jacobian of the transformation, the conjugate 
of the metric tensor and Christophel’s symbols of the second kind, respectively. In 
general, they are prescribed functions of the topography and the specific trans- 
formation, +j is the combined momentum and stress tensors, in the transformed 
coordinates. p = p(z) = p(X, Z) is the basic prescribed density. 0 is the perturba- 
tion potential temperature, where the basic state is that of an hydrostatic adiabatic 
flow with constant potential temperature 19, . p is the perturbation pressure and g 
is the gravitational acceleration. It is important to note that FX and FZ are indepen- 
dent of p. PGX and PGZ on the other hand, are functions of p alone. 

The potential temperature equation may be written as 

(ajat)@Gve) + (a/az*)(pGwe) = affyaxi, (2-3-a) 

Bi = pGl12KHGyae/as). (2-3-b) 

KH is the eddy diffusion coefficient, which, in general, is nonlinear (e.g. Eqs. (2-9) 
and (2-14) of paper I, and Deardorff [3]). 
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The boundary conditions for the momentum equations are “free-slip/rigid”. 
For our particular transformation (see paper I, Eqs. (2-49-a-b)), they may be 
written as: 

ii3=w=() 3 at Z = 0, (2-4-a) 

Gk3(&P/W) = Gi”(i3ii3/W) - @Gm3/W) t-2. (2-4-b) 

Similar equations may be written for the lateral boundaries. There the equations 
are Cartesian and Gij = iP. 

The potential temperature boundary conditions specify either the normal heat 
flux through the boundary, or the temperature on the boundaries, or a combination 
of both. Typically these boundary conditions are (see paper I, Eq. (2-50)) 

qi=o = m, Y,Q, (2-5-a) 
or 

H3)g=0 = f(Z, y, t). (2-5-b) 

In both cases f(x, f, t) is a prescribed function. Similar equations may be written 
for the other boundaries. 

The reader who is interested in a more detailed description of the governing 
equations and the boundary conditions should consult paper I and [7, (pp. 65-75 
and 97-1081. 

B. Finite Differewing 

We wish now to integrate the set defined by (2-l) so that from known quantities 
at time level IZ (t, = At), we can evaluate quantities at time level it + 1. The 
procedure will consist of two steps. 

Step 1. Evaluation of intermediate quantities ( )*, at intermediate time-level 
n+ol,o<cu.<1, 

W’~>2?;,mlc,n+a - W)i+,,,~nW~l + 4W:+m.n+a 
= --(I - 4WWi+1m,n 7 (2-6-a) 

WZ)&+m,n+a - W)i>r+mnWW + dQ$,~+mn+oi 
= --(I - G’G-%+mn + 40.5VL+1,n + ‘b.J>. (2-6-b) 

(PX)* and (PZ)* are seen to be approximations of order 1 + (1 - 201) to the 
momentum equations, but they do not satisfy the continuity equation; therefore 
we denote them ( )* to emphasize that they cannot be considered as a solution to 
the governing equations. Step 1 is implicit and can be solved by inverting tri- 
diagonal matrices, or by iterations. Note that in Step 1 the pressure terms are 
explicit. 
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K(Pz>i.k+llz,n+l - uwi.b+l,Q.nY~tl + w%c+llB.n+o: 
= -bO’GZ)i,k+mn+~ + (1 - OL)(f’GZ)m+wwJ + W-WL+mz + %k.n)). 

In the case 01 = 4, Step Z can be seen to be fully centered in space and time, with 
second-order accuracy in time and in space. If 01 > 4, the accuracy is 2 + (1 - 24. 
Step Z is only of pedagogical value, since we subtract Step 2 from 1 and get the 
following. 

Step 2. 

t(w>i+llz,k,n+l - WY z+l/l.7wJ~~l + (1 - 4(~~x+I,2.k.n+a 
= -@GX)i+m.k.n+~ 3 (2-7-a) 

[((PZ)i.k+~,~,n+l - (PZ):k+,,,,,+cdAtl + t1 - a)(FZ):k+l12,n+a: 

= --(PG-%,le+mn+~ + (1 - 4~(0.5(&.rc+1.n + &.le.n))- (2-7-b) 

It is important to note that the buoyancy force B(0) is evaluated at time level n. 
Therefore the temperature calculation can be separated from the momentum 
calculation. 

C. The Pressure Equation 

Step 2 involves the pressure gradients (PGX, PGZ) as unknown. In order to 
solve for the pressure, an additional equation is needed, namely some finite 
difference approximation to the continuity equation. A finite difference form of the 
continuity equation at every inner point is 

[((PX)i+l,B,k.n+l - (p%l,,,k,,+,)/A~l + [((PZ)i.k+l/$.n+l - (~z>i.k-l,Z.~+l)/d~l 

= 0. (2-8). 

In order to insure satisfaction of (2-8), we substitute (2-7) in (2-8) to get the pressure 
equation 

%,lc.n+ar = --01 (PGXh+mk.n+l - (PGX)i-m.k.n+l 
Al 

+ (PGZ)i.le+m.n+~ - (PGZ)i.wm+l 
AZ I 3 (2-9) 
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where we have defined Fi,k,n+a as 

Fi.lc.n+a = - ( 
w)i*,1/2,ke,n+a - woL,2.k,n+a 

AaAt 

_ (1 _ a) Nei,k+l.n + k,k,J 0.5) - Jwi,k,n + &.k-1,n) 0.5) 
AZ 

(2-10) 

To get the pressure equation in a more expanded form, let us now represent the 
pressure gradients at interior points explicitly. 

(PGX)i+l,,,k = pi+1r;; "*le 

+ (G13~)i+l,k+~ + (G13~)i,k+l - (G13~)i+,,,-~ - (G13~)i,k-l 
442 

(2-l;-a) 
(f,GZ)i,k+l,2 = (G33~)i.k+i; (G33~)i., 

+ (G13~)it~,k+~ + (G13~)i+l,le - (G13~Ll.k+~ - (G13~L,le 
4Ax 

+ KCJ%k,lPi>k,l + (Wi,kPi.k) * o-5. (2-11-b) 

Substituting (2-l 1) into (2-9) results in the pressure equation, for time level n’+ 1: 

--ol Pi+l.k.n+l + %%,k.7z+l + Pi-l.k.n+l 

[ AX2 

+ (G3”~krc+~.n+~ - 2(G33Phn+l + (G33~L~.n+~ 
A.? 

+ (G13~)i+~,k+~.n+~ - (G13~L~,k+~.n+~ - (G13~)i+m-m+l + (G13Ph-mx.n+l 
2AxAz 

+ 0 5 (~-@i.k+lpLk+l,n+l - (cR)2,k-lPi~k-l,n+, 

AZ 1 = F 
i.k,n+a . (2-12) 
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This pressure equation can be seen to be a finite difference analog of the pressure 
equation which one will get by applying the Div operator to the momentum 
equations. 

At the boundaries, and at points neighboring the boundaries, modifications are 
sometimes needed, so that imposed boundary conditions are identically satisfied. 
In addition, one has to ensure mass continuity at the boundaries. Taking into 
account that at the boundaries, k = 1 and k = kT, the mesh width in the Z direc- 
tion is AZ/~, we define the continuity equation at the bottom as 

K(Px)i+ll2,l,n+l - V’xL,,~,,n+J~~l + Kw%*l.5.n+1 - oWW)l = 0. (2-13) 

Here we have imposed (PZ),,l = 0. In order to insure satisfaction of (2-13), we 
have to substitute (2-7) in (2-l 3), as we did previously for interior points. To do so 
we need PGX at the boundary. Inspection of the definition of PGX in (2-2) reveals 
that, if the topography is not zero, both i3p/aX and ap/iE are needed for evaluation 
of PGX. While apli3.z can be obtained from the momentum equation for PZ, at 
k = 1, we have found it more practical to approximate PGX by 

(PGX)i+I,P,I = pi+1r;; “J + (G13~)i+~.2 + (G13~)r,z - (G13~)i+~,~ - (G13~)i,, 
242 

(G13p)i+1,3 - 2(G13~)i+1.2 + (GIS~)i+~.~ 
4Az 

_ (G13~)i,3 - 2(G13~i2 + (G13~)i~~ 

4A5 
(2-14) 

PGX is therefore approximated to second-order accuracy. Now substituting (2-7) 
in (2-13), and using (2-14) for the definition of PGX, we get the pressure equation 
atk= I: 

Fi,w+u = --01 [ 
~i+l,l.n+l - 2~i,,n+, f ~i--l.l.n+l + 2((G33~)i,3,n+~ - (G33~Ln+~) 

x2 A.? 

+ (cR)'2pi'2 + (cR)i*lpi*l + m.+((G13p),+, 2 _ (G13p)i-l 3 
AZ z 

- & ((G13~)i+1.3 - 2(G13~)i+1.3 + (G13~)i+~~d 

& (G13~L3 - 2(G13~L1,2 + (G1’~)i-,,,]. (2-15) 
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Fi,l.?W is defined as 

J5.1i.l.w = - ( 
WL/2.1.ra+a - u-wL12,1,n+a + (PZ*)i*l+ll2*n+l 

Ax At A?//2 At ) 

+ (1 _ a> (o~+liz,l,n+oA~(FX*)i-l/2.1.n+. + (FZ;3g ) 

_ (1 _ a) wL-+P;.l.3 0.5) . (2-16) 

In the case of no topography we get 

--oL 
c 
Pi+l.l,n+l - 2k1,n+1 + Pi--l,l,n+l + (p2 -PI) 

AX2 A.? 1 = F. 
z,1*n+a * (2-17) 

Equation (2-17) could of course be derived from (2-12) with the Neumann boundary 
condition~~,~ = pi,o . 

At the top boundary, the derivation of the pressure equation is somewhat 
different than at the bottom, because Gij)k=k,T = 0 when i #j and (CR& = 0 
(see Eq. (2-2-f)). Thus, 

WWi+1,2,u = KP~+I,w - ~i,wWl + K-(GIS~h+~.~~--l - (G13~h--J2A~l. 
(2-18) 

Here a f&t-order approximation has been used to evaluate (a/Z)(G13p)k=kT . The 
pressure equation is, therefore, 

--oL w+l,kT.n+l 

1 

- @&kT,n+l + pi-l,kT,n+l + 2((G33p)i,k~--l.n+~ - (G33ph.kT,n+l) 

A? A.3 

+ -(G13~)i+~,k~-l,la+~ + (G13~L.k~-l.n+l 

AX Ai? 

+ 
-@5CRi.k~--1pi,k~--l =F, 

OSAz 1 z.kT,n+or 2 (2-19) 

where Fi.k~,n+~ has been defined as 

Fi.k~.a+lr = 
(~x)~+l,2,kT,n+, - (P;Y):-l/2,kT,n+o + -(PZ):kT-l12,n+a 

AX At (Az/2)A t > 

+ t1 _ a) ((FX)~*+II~.LT.~+.~X_(FX):--I,~,~T.~~. + -(FZ$.;i~/2,a*) 

_ (1 _ a, --B((ei,kT,, ;$kT-1.n) - Oe5). (2-20) 
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Alternatively we could approximate the Laplacian by using Eq. (2-12), and defining 
pressure at the exterior points (i, kT + 1). We would then have Eq. (2-12) with 
Fi,kT,latCi defined by (2-20) and with the boundary conditions 

Pi,kT+l.n+l = Pi.kT-l,n+l, (2-21-a) 

(G3%.kr+l = (G33h--1 3 (G13h-+l = -(G13)i,kr-l, (2-21-b) 

(CR)i,kT+l = -(CR)i.kT--l . (2-21-c) 

Substitution of (2-21) in (2-12) will give (2-19). 
At the lateral boundaries Gij = P, and since the mesh width is uniform in the X 

direction, we use (2-12) without modification. The boundary conditions at the 
lateral boundaries are 

P0.k = P1.k > PIA4.k = PIM-1,k , (2-22-a) 
- - - 
wl.k+l/2 = W0.k+112 > wIM-l,k = WIM,k, (2-22-b) 

G2,k = 03 UIM--112.k = O, (2-22-c) 

h,k = b,k 3 8 -e IM,k - IM-1,k * (2-22-d) 

These boundary conditions give the pressure boundary condition, and allow for 
the calculation of Fi,k, as well as (FX)(+lIB,k, (FZ)i,k+l12 at the lateral boundaries. 

D. Comparison with Some “Standard” Cartesian Schemes 

In the case of no-topography, our scheme is a combination of several “standard” 
Cartesian schemes. 

If Step 1 were fully explicit, i.e., 

(F~*)i+m.k.n+or = @-Vi+~/w,n 7 (=*)i.k+1/2,n+ol = (FZh+m.n 3 

our scheme would have been a special case of the ICE method of Harlow and 
Amsden [13]. If, in addition, the condition cy = 1 were to be imposed, this would 
correspond to the MAC method of Harlow and Welch [14]. In either case, if 
viscosity and diffusion were set to zero, and no iterations were used, the method 
would be linearly unstable. 

If Step 1 were fully implicit, and LY = 1 (i.e., the solution would have been 
obtained by inverting matrices), this would correspond, apart from a slight modi- 
fication at the boundaries, to a staggered variant of the Chorin [l] scheme. Actually 
the Chorin prescription could have been implemented just as well with 1 > 01 > +. 

If the time derivative were evaluated using the leap-frog scheme, the advective 
terms evaluated explicitly at time level n, and the diffusive terms evaluated at time 
level IZ - 1, this would essentially correspond to a scheme used by Williams [27], 
Deardorff [2], Fox [6], and Steiner [25]. This scheme is second-order in time and 



NUMERICAL SOLUTION WITH TOPOGRAPHY 287 

space, only with respect to the advective terms. It is second-order in space and 
first-order in time with respect to the diffusive terms. The advantages of the leap- 
frog scheme are that it is economical and does not contain implicit built-in 
smoothing. Thus in the absence of viscosity and diffusion, the staggered variant 
of the leap-frog will ensure quasi-conservation of quadratic quantities. The dis- 
advantages of the leap-frog scheme are that it contains a spurious (splitting) 
solution in time [19], and thus an occasional forward time step is needed. In 
addition it has been shown by Kreiss and Oliger [17] that this scheme is non- 
linearly unstable with respect to certain perturbations. 

In the case cy = $ our scheme, being a variant of the Crank-Nicholson scheme, 
will not contain implicit smoothing. In addition it does not possess a spurious 
solution in time. For 01 > 4 implicit smoothing is introduced. If this implicit 
smoothing is much less than the explicit smoothing given by the nonlinear eddy 
viscosity concept [3, 71, this is useful because it can help control nonlinear insta- 
bilities. 

A scheme which genuinely conserves quadratic quantities is always stable, by 
definition. In the case of a staggered mesh, this can be achieved with the Crank- 
Nicholson scheme [22, p. 1891, in which typical spatial terms, A,j,n+llP at time level 
n + 4 are represented as 

fi,i.nm = 0.5 u&n + L,i,n+J- 

SincefiTj,n+l,z from Step 1 (Eqs. (2-6-a-b)) is a better approximation to 

0.5 (fi,~ +Ln+d thanfii,n 

alone, our scheme will presumably conserve quadratic quantities better than the 
leap-frog scheme. 

0 XLE XL XML XM XMR XR XRE 

FIG. 3. Schematic representations of the topography (solid line), approximating the piecewise 
linear ridge (dashed line) with slopes a, j3. For definitions of other symbols, see text. 
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2.3. Evaluation of (FX)*, (FZ)*, B(B), and the Temperature Equation 

Based on the staggered configuration shown in Figs. 1 and 2, the evaluation of 
the spatial terms is straightforward. The various terms are approximated by finite 
differences over one grid interval. If a quantity is needed at grid points where it is 
not defined, it is approximated by linear interpolation. The details, which are in fact 
a straightforward application of the MAC prescription, can be found in [7]. 

2.4. Summary of the Calculational Procedures 

The full algorithm can be now summarized as follows. 

(1) For given PX and PZ at previous time step, calculate (PGX)i+llB,k,n and 
(PGZ)~,~+II~ using (2-11) for interior and lateral boundary points, (2-14) for 
lower boundary points, and (2-18) for the top boundary. Since the buoyancy force 
is not part of the iteration, calculate B(0) before starting the iterations. 

(2) Solve iteratively Eqs. (2-6-a-b). The iterations can be viewed as an iterative 
solution, for a system of nonlinear algebraic equations. The system can be written 
symbolically as 

f= r(f), 

and the simplest iteration technique is 

f m+l = r(f(“)), m = I,...,p. 

No more than three or four iterations are used in practice, since even in the absence 
of full convergence, Eqs. (2-6-a-b) are an approximation of order 2(1-a) to the 
governing equation. 

(3) Evaluate Fi,K,n+ar by using (2-10) at interior points and lateral boundaries, 
(2-16) at the lower boundary, and (2-20) at the upper boundary. 

(4) Solve the elliptic pressure equation defined by (2-12) and (2-15). If Eq. (2-12) 
is used for the top boundary, the boundary condition (2-21) should be imposed. If 
no explicit boundary condition is given at the top, (2-19) should be used. The 
Eq. (2-12) could be solved by direct methods [23], but in the present work the 
solution has been obtained by relaxation techniques [l, 5,261. The choice of an 
optimal relaxation factor is crucial to the rate of convergence. While in some cases 
one can determine analytically the relaxation factor, in most cases this is done 
empirically, as a function of the number of mesh points, the specific transformation 
and the grid size. At any rate the finite difference analog of the pressure equation is 
singular, but this does not affect the convergence [15]. 

(5) Compute W~i+l12.k.n+l , and VZ)i.k+llS.n+l from (2-7). 
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(6) Using the advanced-time, Jacobian-weighted contravariant components of 
the momentum vector PX and PZ, solve iteratively the finite difference analog of 
the temperature equation (2-3-a-b) by the two-step method outlined previously. 
No more than three to four iterations are used. Here we use a parameter /I, 

0.5 < p < 1, (2-23) 

to control implicit smoothing, analogously to a in Eqs. (2-6) and (2-7). 

This completes one cycle. At this stage, the governing equations are satisfied to 
second-order accuracy in space at every interior point, and to first-order accuracy 
at the boundaries. The accuracy in time is 2 + (1 - 2a) for the momentum 
equations, and 2 + (1 - 2/3) for the temperature equation. The parameters 

1 3 (01, B) 3 k (2-24) 

are used to control implicit built-in smoothing. For cy. = /3 = 4 no implicit 
smoothing is present. 

2.5. Some Heuristic Remarks on Stability, Convergence, 
Truncation Errors and Numerical Diffusion 

The stability and convergence of our scheme are not fully explored even for the 
case of no-topography. The numerical evidence, however, shows that the scheme 
is stable whenever its analogous Cartesian scheme is stable. There are several 
reasons why we have been hardly surprised by this result. First we note that the 
physics is unaltered by our transformation, and second that the transformation is 
nonsingular. Thus, if we had a uniform mesh in the 2, Z directions defined by a, 
then we have a nonuniform mesh in the X, z direction. Let us now find a lower 
bound min L3 for the size of the mesh as measured in the (x, z) plane. In general 

Thus, 
G1ja dX dJ dZ M dx dy dz. 

min d w min(G1/2)1/3 6. 

For our particular transformation 

G1i2 = (H - z,)/H < 1. 

Thus mind w (min G1j2) d is a safe estimate. The classical Courant-Friedrichs- 
Lewy (CFL) condition for linear stability with respect to the advective terms reads 
in a Cartesian mesh for velocity u as 

or 
b 1 u 1 dt/(d1/2 min 0) < 1, 

b 1 u j At/(d1/2G1/26) < 1. (2-25) 
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b is a constant of order unity which depends on the particular difference scheme, 
and d is the space dimension. It must be emphasized again that 

1 u \ # (ii” + iPy2, but ( u ( = (u” + w2)li2. 

For the diffusive and dissipative terms, similar heuristic arguments will lead to 
the stability condition 

bK &/((G1/2)2 ii2) < 1/2d. (2-26) 

K is the viscosity or diffusion coefficient. 
Having indicated that the linear stability properties of our scheme are essentially 

those of its analogous Cartesian scheme, the next logical question is what are the 
linear stability properties of the scheme in the absence of topography. Con- 
sideration must also be given to the linear stability of the combined two steps. For 
the case 01 = /3 = 4 the combined two steps can be seen to be an iterative solution 
of the Crank-Nicholson scheme. According to Gary [9], in order to ensure the 
stability of the scheme with respect to the advective terms, b = &ol, and the number 
of iterations has to be chosen from the sequence 3,4,7, 8, 11, 12. Similar analysis 
with respect to the diffusive terms shows that condition (2-26) with b = 1 is 
sufficient for stability for any number of iterations. In fact, 4 < b < 1 is permitted 
for the combined two steps as far as stability is concerned, but in this case the 
iterations of Step 1 will not converge. Thus, we will not be able to claim that we 
have solved iteratively Eqs. (2-3). If one is not too much concerned about second- 
order accuracy in time, one can treat the diffusive terms explicitly and iterate only 
on the convective terms. Gustafsson [ 121 has used a form of Gary’s scheme for 
two-dimensional calculations of the shallow-water equations and has obtained 
satisfactory results. 

In order for the method of transformed coordinates to be a viable alternative to 
the more straightforward approach of using Cartesian coordinates, it must satisfy 
the following practical requirements. 

(a) Truncation errors, with and without topography, should be of the same order 
of magnitude. 

(b) The time step, with and without topography, should be of the same order of 
magnitude. 

(c) While a decrease in the calculational speed is expected due to the need to 
calculate extra terms, it is highly desirable that for a given accuracy the 
amount of pressure iterations, with and without topography, will be roughly 
the same. 

In paper I it has been shown that, in order for requirements (a)-(c) to be met, one 
must specify a nonsingular transformation with a topography continuous up to 
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second derivatives. Equations (2-25) and (2-26) reveal that an additional constraint 
for our particular transformation is 

G1jz m 1. 

The particular topography that we have chosen is shown schematically in Fig. 3. 
Mathematically, it is expressed as 

( 
i 
1, X < XLE, 

( 
“‘x2;Lx”“‘) + (X - XLE) 

2 1 
3 

z, = 

x>xRE, ( 

where (2-27) 

IXLE-XLI=DL, IXRE-XR\=DR, 

XLE < X < XL + DL, 

tan y(X - XL), XL+DL<X<XML, 

XM - XML sin n-(X - XML) 
?r ( (XM - XML) 1 

+ (X - XML) 
tan y 

2 
’ + (XML - XL) 1 

XMLGXGXM, 

XM - XMR sin r(X - XMR) 
7r ( (XM - XMR) ) + (X - XMR) 

tan 6 
2 

’ - (XMR - XR) 1 
-tan 8(X - XR), XMR,(X,(XR-DR, 

_ 2DR sin 

-tan 6 7r ( 
?i”2;;m’ ) + (X - XRE) 

2 1 2 
XR-DR<X<XRE, 

[ XMR - XM 111 XM - XML ( = tan y/tan 6. 

It can be seen that this approximates a linear ridges of slopes, y, 6, respectively. 
z, is also seen to be continuous, with continuous first and second derivative. The 
actual parameters that we have chosen are: 

D=H=7km, XL=1.7km, XM=3Skm, XR=5.3km. 
DL=1km,DR=1km,~XM-XMLl=~XM-XMR~=1km,y=S=45”. 
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The height of the summit .zSmax. is, according to (2-27), w 1.3 km. This topography 
seems suitable for proving the viability of our method, since the slope varies 
continuously from 0” to 45” and then decreases continuously until it reaches 0” at 
the summit. When the quantities z, , az,/ax, a2zS/ax2, are scaled and nondimen- 
sionalized with respect to z,,,,. , they are seen to be of the same order of magnitude, 
i.e., - 1, 1, ~ZmB, ,/2DL. Therefore the second derivative is not large compared to 
the first derivative. This latter property is essential, since linear stability properties 
strongly depend on the fact that the extra nonderivative terms are O(dt), and the 
transformation is nonsingular. 

If the initial condition on the potential temperature indicates a stable environ- 
ment, an additional precautionary step is necessary. It must be realized that in that 
case the pressure still contains hydrostatic terms given by: 

Consequently, one can subtract these hydrostatic terms from the pressure gradient 
and the buoyancy force B(B), respectively (see Eqs. (2-l-b) and (2-l-c)). By doing 
so, the truncation errors associated with transformed coordinates can be mini- 
mized [IO]. 

When the above-mentioned constraints have been taken into account, require- 
ments (a)-(c) are satisfied. While it is a straightforward matter to check the 
fulfillment of (b) and (c), there is no general way to estimate truncation errors, 
especially those due to aliased interaction [6]. In the case of thermal convection, 
Fox [6] has found that the appearance of physically impossible negative deviations 
of potential temperature is an indication of large truncation errors. In general, if 
viscosity and diffusion are large enough, this kind of truncation error can be 
avoided. Our numerical experiments have shown that the minimum nonlinear 
eddy viscosity [3, 71 needed to prevent negative deviations of potential temperature 
is the same for zero and nonzero topography. In the absence of explicit viscosity 
the parameters ~1, /I (Eq. (2-24)) can be used to add an implicit smoothing and 
thereby eliminate negative temperature deviations. It has been found that the 
minimum values of (Y and p which are necessary to achieve the above requirements 
are the same with and without topography. 

It is well known [19] that in the case of no topography and constant basic density, 
the staggered-mesh configuration and centered time and space differencing will, in 
the absence of normal fluxes, assure quasiconservation of quadratic quantities, 
thereby eliminating implicit smoothing. In the transformed domain the convective 
terms contain extra nonderivative terms. Therefore quasiconservation has to be 
checked empirically. In order to compare between numerical and real diffusion, we 
performed the following consistency check. With the topography debed in (2-27), 
we set KH = KM = 0 and a = j3 = 3 (see Eqs. (2-6-a-b), (2-23) and (2-24)). We then 
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- - specified an initial perturbation 0 = f(x, z), with 0 max < 1 deg. The time step 
was governed by (2-25) with b = 1, but dt was not allowed to exceed 10 sec. An 
upper bound of 10 set for this case of an initially specified “hot-spot” was neces- 
sary, since this is a physically unstable situation with a fast rate of development. 
We then performed calculations with various initial conditions, and in all of them 
quadratic quantities were conserved to within 1% in which case 

all quadratic quantities 
are quasiconserved. This is apparently typical with difference schemes which 
quasiconserve quadratic quantities [ll]. When the values 01 = 0.6 and /3 = 0.51 
are used, no blow-up occurs. For these values of 01 and fl, implicit (built-in) 
smoothing is present. Nevertheless, when comparing this smoothing with the 
nonlinear eddy viscosity prescription recommended by Deardorff [3], we have found 
that this latter smoothing is about an order of magnitude greater than the implicit 
smoothing. 

Having made consistency checks, we next perform some numerical experiments 
of meteorological significance to demonstrate the viability of our method. 

III. APPLICATION TO METEOROLOGY 

3.1. Summary of Observations 

The numerical method outlined in the previous sections has been applied to 
simulate the meteorological phenomena of mountain up-slope winds. A detailed 
meteorological discussion of the phenomena has been given by Orville [21] and 
Gal-Chen [7]. The observed general features of the phenomena are: 

(a) Despite the fact that the potential temperature deviations from reference 
atmospheres (hydrostatic but not necessarily adiabatic) are decreasing 
up-slope, the flow near the ground is up-slope (countergradient). 

(b) Secondary weak circulation is sometimes observed at points neighboring a 
mountain. 

(c) The depth of the up-slope winds increases with distance up the slope. 
(d) In a stable atmosphere the lower layer may eventually become unstable (due 

to heating). The depth of the unstable layer increases up-slope. Above the 
unstable layer is an almost adiabatic layer, and above this is the stable layer. 

These features have successfully been simulated in our numerical experiments. 
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3.2. Specljications of the Experiments 

The calculations are performed on a vertical plane 7 x 7 km with the topography 
specified by (2-27). This topography seems suitable for demonstrating the generality 
and viability of the method, since it has a variable slope. The reference potential 
temperature is 8, = 296°K. A grid of 71 x 71 points is constructed in the X, Z 
plane. The grid spacing as viewed by a Cartesian observer is of course variable, but 
on the order of 100 m. The distribution of variables on the grid has been described 
in detail in Section II. The boundary conditions for the momentum equations are 
“free slip” along all boundaries. Thus, no drag is modeled at the lower boundary. 

The boundary conditions for the potential temperature are no heat fluxes at 
lateral boundaries and constant potential temperature at the top. 

To calculate the potential temperature deviation at the lowest grid point, the 
following parametric procedure has been used. It is first postulated that the distance 
between the lowest grid points (i, l), and the ground (i, 8) is d-/2. Next, the potential 
temperature deviations at the ground (i, &), are specified as: 

0),=, = &z),=, + (7 - 4(zs/zsmax)) S(Z) sin(r(W2)). (3-l) 

&z) represents the initial potential temperature stratification (to be specified later), 
T is time in hours, z,~~, is the height of the summit, z, is the topography and 
z = z(Z, 2) is the z coordinate. S(X) is a function which specifies whether the 
mountain is being heated symmetrically or asymmetrically. If the heating is 
symmetric, 

S(X) = 1. (3-2) 
If it is asymmetric, 

‘@’ = I 
1, x < 3.5 km, 
l/2 cos[(z - 3.5) 2~/3.5] + l/2, x 3 3.5 km I * (3-3) 

Then at a given time level, by knowing the potential temperature perturbation at 
the ground 0i,1,2 , and the potential temperature perturbation at the lowest grid 
point &I , we can calculate the heat flux in the following way. First we calculate 
the quantity 

z,3,4 = Gw4.1 - kllwmi 
+ (wi.l(~i+l.l + ei+1.1/3 - ei-l,l - ~i-1,1,3w~~ 

(Eq. (2-3-b)). Then, from the value of (K )., H z 1,2 and assuming that the heat flux in 
the boundary layer is independent of the height above the ground, the heat flux at 
the lowest grid point can be calculated and therefore the temperature at the lowest 
grid point can be calculated, At the lowest grid point, therefore, both advective 
cooling or warming and turbulent diffusion are present. 
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This treatment of the lower boundary is much like that used by Orville [20]. The 
deficiencies of this treatment have been mentioned in paper I, Section 2.4. Never- 
theless, the more realistic approach of identifying the lower grid point with the 
ground, and imposing “no-slip” there, has been tried unsuccessfully by Orville [20]. 
His failure was possibly due to insufficient resolution. At any rate, the prescrip- 
tion just outlined is mathematically well posed and can be viewed as a param- 
eterization of heat flux. 

The model atmosphere is initially at rest, and the potential temperature devia- 
tion at the ground drives the motion. Two types of initial stratification 8(z) have 
been used. The first is a neutral atmosphere, in which I’&,, = 0. The second is a 
moderately stably stratified atmosphere, with stability ST, given by: 

ST = (a8/az)),=, = 1 deg/km. 

Thus, in cgs units and in the X, Z coordinates, 

fQ=, = e. + lo-5((Z(H - z,)/H) + ZS)# 

It is important to note that in the actual computation, the constant B0 is always 
subtracted out and the perturbation is calculated. This is done to avoid large 
truncation error. In Section 2.5 we have listed other precautionary measures to 
avoid large truncation errors. 

In the diffusive terms of the temperature equation, but not in the advective 
terms, we treat the temperature as a deviation from the reference hydrostatic 
temperature B(z). Otherwise, the calculated turbulent heat fluxes in a stable 
atmosphere will be downward, contrary to observation and theory, which suggest 
that the heat flux in a stable atmosphere is countergradient [4]. 

The time step is determined by (2-25) and (2-26) with b = 0.9/(2 max (01, /I)); 
01 and /3 control the amount of implicit smoothing. The values 01 = 0.55, /3 = 0.51 
are used. An upper limit of 50 set has been imposed on the time step. The nonlinear 
eddy viscosity concept has been applied throughout the calculation (e.g., [3, 71). 

We have performed five experiments. The experiments with their parameters are 
listed in Table 1. The computations were done on an IBM 360/95 and took approxi- 
mately 15 hr of machine time. On the average it took about 1 hr of machine time to 
simulate 2 hr of real time. 

A symmetric perturbation is a perturbation given by (3-l) with S(X) = 1. An 
asymmetric perturbation is also given by (3-l) but with S(X) given by (3-3). 

A momentum stream-function for display purposes has been calculated. The 
stream function is shown in units of lo2 gm cm-l set-I. The time in minutes is 
shown in the upper-left corner of the figures, and the experiment number in the 
upper-right corner. 



296 GAL-CHEN AND SOMERVILLE 

TABLE I 

List of the Numerical Experiments and Their Parameters 

Expt Type of perturbation Type of atmosphere 0-l = KH/KM 

1 Symmetric Neutral (a&& = 0) 1 
2 Symmetric Stable (asjar = 1 deg/km) 1 
3 Symmetric Stable (afi/az = 1 deg/km) 3 
4 Asymmetric Neutral 1 
5 Asymmetric Neutral 3 

3.3. Results of the Experiments 

The results of Expt I are shown in Figs. 4-9. This case is characterized by 
relatively rapid development. After 30 min (Fig. 4), the vortex center (the stream 
function center), which originates near the bottom of the slope, is close to the 
summit and continues rising uphill. After 30 min, the potential temperature 
above the plain is still rather uniform (Fig. 5). After 45 min (Fig. 6), the vortex 
center is about 2.5 km high, i.e., -1.2 km above the summit, and it is moving away 
from the axis of symmetry. By that time a secondary circulation has been developed 
in the plain, but it is too weak to be seen on the stream function plot. At this stage, 
the secondary circulation is apparently not affected by the lateral boundaries, which 
are still motionless. As a further check of this conjecture we have moved the 
lateral boundaries further away by adding more mesh points and we still get 
secondary circulation after 45 min. Inspection of the temperature field after 45 min 
(Fig. 7), shows that at the plain grid points nearest the slopes, advective cooling is 
at work. The horizontal uniformity over the plain is therefore gradually being 
destroyed. This happens despite the fact that the plain is heated uniformly. Above 
the summit, the isentropes attain a mushroom shape. After 60 min. (Fig. S), the 
stream function center continues to move away from the axis of symmetry. The 
secondary circulation is well developed by that time. The isentrope contours 
(Fig. 9) show that the cap continues to rise and is quite close to the top. Another 
cap is in the process of development at the side boundaries. We have already seen 
that after 45 min advective cooling at plain points which neighbor the slope has 
caused horizontal nonuniformity. Fifteen min later, as a result of this horizontal 
nonuniformity, a warm bubble can be seen 0.5 km above the ground (Fig. 9). This 
warm bubble is the 0.45 contour, just above the plain. The developemnt and history 
of the main circulation is similar to that of Orville [20]. Nevertheless our overall 
picture is less diffused, and less smoothed. The main difference between our case 
and Orville’s ease is that no sign of a secondary circulation can be seen in his 
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results. This is probably due to the fact that his implicit diffusion is large enough to 
compensate for advective cooling, and the shape of isentropes above the plain in his 
case continues to be dominated by the uniform heating of the ground. 
Experiment 1 was integrated up to 90 min. The results after more than 60 min are 
not shown graphically, since at this stage the top boundary had considerably 
affected the motion. The flow fields, however, are computationally stable. 

The results of Expt 2 are dramatically different from those of Expt 1. Due to the 
environmental stability, it has a slower rate of development. 
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FIG. 10. Stream function field after 120 min for Expt 2. 

The results of Expt 2 after 120 min are shown in Figs. 10-l 1. By that time the 
secondary circulation is well developed (Fig. 10). The first signs of a secondary 
circulation, however, appear after 90 min. The circulations are still confined to the 
lower atmosphere. As time advances, the isentropes above the summit (Fig. 11) 
become tighter. The stability is therefore increased, and it is more difficult for the 
convection to penetrate. Another characteristic of Expt 2 (Fig. 11) is that the 
stability of the lower parts of the atmosphere is destroyed. The depth of the unstable 
layer is increasing upslope (in agreement with Fosberg’s observation [21]). 
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FIG. 11. Potential temperature deviations after 120 min for Expt 2. 

The results of Expt 3 (in which I&/K, = 3 instead of 1) are a further indication 
of the crucial part that eddy diffusion plays in enhancing the motion and in con- 
trolling the secondary circulation. 

Some results of Expt 3 are displayed in Figs. 12-15. After 120 min, the main 
circulations are more developed than in Expt 2 at that time. The main circulation 
has been extended to the side boundaries (Fig. 12), and the secondary circulation 
never appears. By this time, the chances that a secondary circulation will eventually 
appear are very small, since the return flow at the plain, together with diffusion, is 
now strong enough to counterbalance advective cooling. Except for the dis- 
appearance of the secondary circulation, the isentrope pattern of Expt 3 (Fig. 13), 
in the main cell, is very much like that of Expt 2. Above the summit, the result of 
the penetrating convection is an increased stability of the atmosphere (Fig. IS), 
just above the convective layer, which will further inhibit convection. Figure 15 
reveals that in general, three layers are seen now to exist: a superadiabatic lower 
layer; an almost adiabatic layer just above; and a stable layer on top. This feature 
is in agreement with observation (e.g., Orville [21]). Above the summit and the 
upper slopes, the stable layer is actually an inversion lid. Further down-slope the 
stability is moderate to weak. 
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The inversion lid which is eventually created is very similar to an inversion which 
sometimes occurs above hot cities during summer (the “heat island” effect). In 
both cases, the reason for the inversion is strong differential heating, combined 
with atmospheric stability and modified by orographic effects. Such an inversion 
over a city tends to trap pollutants. 
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FIG. 16. Stream function field after 60 min for Expt 4. 

Experiment 4 is different from Expt 1 in that asymmetric heating has been 
imposed. The results are shown in Figs. 16-19. Early in the integration, two main 
cells of uneven magnitude existed side by side. Very soon, however, larger horizon- 
tal velocities developed in what was formerly the axis of symmetry. After 60 min 
(Fig. 16), the smaller cell has been entirely consumed by the larger one, and at the 
right-hand side of the boundary, a new cell has developed due to uneven heating on 
the right plain. This cell is more evident in the isentropes in Fig. 17, which show a 
conspicuous mushroom at the right boundary. This mushroom is very similar to 
the bubble cell in Lilly’s [18] numerical experiment, and it is not very much in- 
fluenced by the slope. Above the summit, the perturbation rises only a little, and is 
swept to the right. The secondary circulation, which has developed in the lower 
left-hand corner, is similar to the one in the analogous symmetric case (Expt 1, 
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FIG. 17. Potential temperature deviations after 60 rnin for Expt 4. 
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FIG. 18. Stream function field after 75 min for Expt 4. 
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Fig. 8). (Note that in Eq. (3-3), S(S) = 1 for x f 3.5.) This is a further indication 
that the secondary circulation develops because of advective cooling, which upsets 
the uniform heating, and not because of mechanical convergence. 
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FIG. 19. Potential temperature deviations after 75 min for Expt 4. 

Figures 18-19 show the results of Expt 4 after 75 min. The general features are 
that cell C further rises and moves to the left, cell B further moves to the right, and 
the secondary circulation A is further developed. 

Experiment 5 (Figs. 20-22) differs from Expt 4 by having greater eddy thermal 
diffusion, although an unaltered prescription for eddy viscosity. The growth is 
therefore faster than in Expt 4. Cells A, B and C in Fig. 21 are seen to be more 
developed than their analogs in Expt 4. Cell C is higher. 

A feature common to all these experiments is that the depth of the up-slope 
winds increases with distance up the slope. This feature is in agreement with 
Defant’s observation [21]. The magnitude of the up-sIope winds near the summit 
at the end of Expt 3 (after 165 min) is 7-8 m see-I. This is in agreement with 
Defant’s observations which were done in a stable environment. 

The results of Expts 2 and 3 indicate that a stable atmosphere can be integrated 
for an extended time, with virtually no artificial numerical effects of interaction 
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FIG. 21. Stream function field after 75 min for Expt 5. 
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FIG. 22. Potential temperature deviations after 75 min for Expt 5. 

with the top boundary. Numerical interaction of the secondary circulation with 
the lateral boundary occurs both in the stable and neutral case. However, the 
lateral boundaries do not initiate the secondary circulation, nor do they modify its 
early development. 

IV. CONCLUSIONS 

Numerical simulation of convection is considered a difficult problem, even 
without topography. Yet in this work we were able to include topography in a 
quite general way. 

The major computational difficulty in calculating nonhydrostatic flow above 
terrain is associated with the fact that in Cartesian coordinates the lower boundary 
is irregular. As a result, it is very difficult to incorporate the correct boundary 
conditions, and it is necessary to define special mesh points near the boundary. 
Consequently, such calculations often have a somewhat narrow range of applica- 
bility (e.g., simple geometry or steady-state assumption). Our coordinate trans- 
formation enables us to devise a numerical method which overcomes these difficul- 
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ties. The major conclusion is, therefore, that the range of applicability of “conven- 
tional” difference schemes has been extended to arbitrary topography, with con- 
tinuous second derivatives. 

The results of our computations demonstrate the viability of our method. The 
general small-scale characteristics of mountain up-slope winds have been simulated. 
In addition, the results have demonstrated the crucial role played by the exchange 
coefficients and the environmental stability, in determining both the quantitative 
and qualitative features of the circulations. 

Our method should be applicable to other hydrodynamical problems in which 
the lower boundary is irregular. 
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